TSTP Solution File: QUA012^1 by cvc5---1.0.5

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cvc5---1.0.5
% Problem  : QUA012^1 : TPTP v8.1.2. Released v4.1.0.
% Transfm  : none
% Format   : tptp
% Command  : do_cvc5 %s %d

% Computer : n012.cluster.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 2.10GHz
% Memory   : 8042.1875MB
% OS       : Linux 3.10.0-693.el7.x86_64
% CPULimit : 300s
% WCLimit  : 300s
% DateTime : Thu Aug 31 13:31:30 EDT 2023

% Result   : Theorem 45.33s 45.55s
% Output   : Proof 45.33s
% Verified : 
% SZS Type : -

% Comments : 
%------------------------------------------------------------------------------
%----WARNING: Could not form TPTP format derivation
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% 0.12/0.13  % Problem    : QUA012^1 : TPTP v8.1.2. Released v4.1.0.
% 0.12/0.14  % Command    : do_cvc5 %s %d
% 0.14/0.35  % Computer : n012.cluster.edu
% 0.14/0.35  % Model    : x86_64 x86_64
% 0.14/0.35  % CPU      : Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
% 0.14/0.35  % Memory   : 8042.1875MB
% 0.14/0.35  % OS       : Linux 3.10.0-693.el7.x86_64
% 0.14/0.36  % CPULimit   : 300
% 0.14/0.36  % WCLimit    : 300
% 0.14/0.36  % DateTime   : Sat Aug 26 16:40:10 EDT 2023
% 0.14/0.36  % CPUTime    : 
% 0.21/0.50  %----Proving TH0
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  % File     : QUA012^1 : TPTP v8.1.2. Released v4.1.0.
% 0.21/0.50  % Domain   : Quantales
% 0.21/0.50  % Problem  : 0 annihilates arbitrary sums from the left
% 0.21/0.50  % Version  : [Hoe09] axioms.
% 0.21/0.50  % English  :
% 0.21/0.50  
% 0.21/0.50  % Refs     : [Con71] Conway (1971), Regular Algebra and Finite Machines
% 0.21/0.50  %          : [Hoe09] Hoefner (2009), Email to Geoff Sutcliffe
% 0.21/0.50  % Source   : [Hoe09]
% 0.21/0.50  % Names    : QUA12 [Hoe09] 
% 0.21/0.50  
% 0.21/0.50  % Status   : Theorem
% 0.21/0.50  % Rating   : 0.31 v8.1.0, 0.45 v7.5.0, 0.43 v7.4.0, 0.56 v7.2.0, 0.50 v7.1.0, 0.62 v7.0.0, 0.57 v6.4.0, 0.67 v6.3.0, 0.60 v6.2.0, 0.57 v6.0.0, 0.43 v5.5.0, 0.67 v5.4.0, 0.80 v4.1.0
% 0.21/0.50  % Syntax   : Number of formulae    :   27 (  14 unt;  12 typ;   7 def)
% 0.21/0.50  %            Number of atoms       :   52 (  18 equ;   0 cnn)
% 0.21/0.50  %            Maximal formula atoms :    2 (   3 avg)
% 0.21/0.50  %            Number of connectives :   46 (   0   ~;   1   |;   4   &;  40   @)
% 0.21/0.50  %                                         (   1 <=>;   0  =>;   0  <=;   0 <~>)
% 0.21/0.50  %            Maximal formula depth :    6 (   2 avg)
% 0.21/0.50  %            Number of types       :    2 (   0 usr)
% 0.21/0.50  %            Number of type conns  :   44 (  44   >;   0   *;   0   +;   0  <<)
% 0.21/0.50  %            Number of symbols     :   17 (  15 usr;   6 con; 0-3 aty)
% 0.21/0.50  %            Number of variables   :   28 (  15   ^;   9   !;   4   ?;  28   :)
% 0.21/0.50  % SPC      : TH0_THM_EQU_NAR
% 0.21/0.50  
% 0.21/0.50  % Comments : 
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  %----Include axioms for Quantales
% 0.21/0.50  %------------------------------------------------------------------------------
% 0.21/0.50  %----Usual Definition of Set Theory
% 0.21/0.50  thf(emptyset_type,type,
% 0.21/0.50      emptyset: $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(emptyset_def,definition,
% 0.21/0.50      ( emptyset
% 0.21/0.50      = ( ^ [X: $i] : $false ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(union_type,type,
% 0.21/0.50      union: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(union_def,definition,
% 0.21/0.50      ( union
% 0.21/0.50      = ( ^ [X: $i > $o,Y: $i > $o,U: $i] :
% 0.21/0.50            ( ( X @ U )
% 0.21/0.50            | ( Y @ U ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(singleton_type,type,
% 0.21/0.50      singleton: $i > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(singleton_def,definition,
% 0.21/0.50      ( singleton
% 0.21/0.50      = ( ^ [X: $i,U: $i] : ( U = X ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----Supremum Definition
% 0.21/0.50  thf(zero_type,type,
% 0.21/0.50      zero: $i ).
% 0.21/0.50  
% 0.21/0.50  thf(sup_type,type,
% 0.21/0.50      sup: ( $i > $o ) > $i ).
% 0.21/0.50  
% 0.21/0.50  thf(sup_es,axiom,
% 0.21/0.50      ( ( sup @ emptyset )
% 0.21/0.50      = zero ) ).
% 0.21/0.50  
% 0.21/0.50  thf(sup_singleset,axiom,
% 0.21/0.50      ! [X: $i] :
% 0.21/0.50        ( ( sup @ ( singleton @ X ) )
% 0.21/0.50        = X ) ).
% 0.21/0.50  
% 0.21/0.50  thf(supset_type,type,
% 0.21/0.50      supset: ( ( $i > $o ) > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(supset,definition,
% 0.21/0.50      ( supset
% 0.21/0.50      = ( ^ [F: ( $i > $o ) > $o,X: $i] :
% 0.21/0.50          ? [Y: $i > $o] :
% 0.21/0.50            ( ( F @ Y )
% 0.21/0.50            & ( ( sup @ Y )
% 0.21/0.50              = X ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(unionset_type,type,
% 0.21/0.50      unionset: ( ( $i > $o ) > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(unionset,definition,
% 0.21/0.50      ( unionset
% 0.21/0.50      = ( ^ [F: ( $i > $o ) > $o,X: $i] :
% 0.21/0.50          ? [Y: $i > $o] :
% 0.21/0.50            ( ( F @ Y )
% 0.21/0.50            & ( Y @ X ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(sup_set,axiom,
% 0.21/0.50      ! [X: ( $i > $o ) > $o] :
% 0.21/0.50        ( ( sup @ ( supset @ X ) )
% 0.21/0.50        = ( sup @ ( unionset @ X ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----Definition of binary sums and lattice order
% 0.21/0.50  thf(addition_type,type,
% 0.21/0.50      addition: $i > $i > $i ).
% 0.21/0.50  
% 0.21/0.50  thf(addition_def,definition,
% 0.21/0.50      ( addition
% 0.21/0.50      = ( ^ [X: $i,Y: $i] : ( sup @ ( union @ ( singleton @ X ) @ ( singleton @ Y ) ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(order_type,type,
% 0.21/0.50      leq: $i > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(order_def,axiom,
% 0.21/0.50      ! [X1: $i,X2: $i] :
% 0.21/0.50        ( ( leq @ X1 @ X2 )
% 0.21/0.50      <=> ( ( addition @ X1 @ X2 )
% 0.21/0.50          = X2 ) ) ).
% 0.21/0.50  
% 0.21/0.50  %----Definition of multiplication
% 0.21/0.50  thf(multiplication_type,type,
% 0.21/0.50      multiplication: $i > $i > $i ).
% 0.21/0.50  
% 0.21/0.50  thf(crossmult_type,type,
% 0.21/0.50      crossmult: ( $i > $o ) > ( $i > $o ) > $i > $o ).
% 0.21/0.50  
% 0.21/0.50  thf(crossmult_def,definition,
% 0.21/0.50      ( crossmult
% 0.21/0.50      = ( ^ [X: $i > $o,Y: $i > $o,A: $i] :
% 0.21/0.50          ? [X1: $i,Y1: $i] :
% 0.21/0.50            ( ( X @ X1 )
% 0.21/0.50            & ( Y @ Y1 )
% 0.21/0.50            & ( A
% 0.21/0.50              = ( multiplication @ X1 @ Y1 ) ) ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(multiplication_def,axiom,
% 0.21/0.50      ! [X: $i > $o,Y: $i > $o] :
% 0.21/0.50        ( ( multiplication @ ( sup @ X ) @ ( sup @ Y ) )
% 0.21/0.50        = ( sup @ ( crossmult @ X @ Y ) ) ) ).
% 0.21/0.50  
% 0.21/0.50  thf(one_type,type,
% 0.21/0.50      one: $i ).
% 0.21/0.50  
% 0.21/0.50  thf(multiplication_neutral_right,axiom,
% 0.21/0.50      ! [X: $i] :
% 0.21/0.50        ( ( multiplication @ X @ one )
% 0.21/0.50        = X ) ).
% 0.21/0.50  
% 0.21/0.50  thf(multiplication_neutral_left,axiom,
% 45.33/45.55      ! [X: $i] :
% 45.33/45.55        ( ( multiplication @ one @ X )
% 45.33/45.55        = X ) ).
% 45.33/45.55  
% 45.33/45.55  %------------------------------------------------------------------------------
% 45.33/45.55  %------------------------------------------------------------------------------
% 45.33/45.55  thf(multiplication_anni,conjecture,
% 45.33/45.55      ! [X: $i > $o] :
% 45.33/45.55        ( ( multiplication @ zero @ ( sup @ X ) )
% 45.33/45.55        = zero ) ).
% 45.33/45.55  
% 45.33/45.55  %------------------------------------------------------------------------------
% 45.33/45.55  ------- convert to smt2 : /export/starexec/sandbox2/tmp/tmp.rZY6v1e8Qm/cvc5---1.0.5_20834.p...
% 45.33/45.55  (declare-sort $$unsorted 0)
% 45.33/45.55  (declare-fun tptp.emptyset ($$unsorted) Bool)
% 45.33/45.55  (assert (= tptp.emptyset (lambda ((X $$unsorted)) false)))
% 45.33/45.55  (declare-fun tptp.union ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 45.33/45.55  (assert (= tptp.union (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (or (@ X U) (@ Y U)))))
% 45.33/45.55  (declare-fun tptp.singleton ($$unsorted $$unsorted) Bool)
% 45.33/45.55  (assert (= tptp.singleton (lambda ((X $$unsorted) (U $$unsorted)) (= U X))))
% 45.33/45.55  (declare-fun tptp.zero () $$unsorted)
% 45.33/45.55  (declare-fun tptp.sup ((-> $$unsorted Bool)) $$unsorted)
% 45.33/45.55  (assert (= (@ tptp.sup tptp.emptyset) tptp.zero))
% 45.33/45.55  (assert (forall ((X $$unsorted)) (= (@ tptp.sup (@ tptp.singleton X)) X)))
% 45.33/45.55  (declare-fun tptp.supset ((-> (-> $$unsorted Bool) Bool) $$unsorted) Bool)
% 45.33/45.55  (assert (= tptp.supset (lambda ((F (-> (-> $$unsorted Bool) Bool)) (X $$unsorted)) (exists ((Y (-> $$unsorted Bool))) (and (@ F Y) (= (@ tptp.sup Y) X))))))
% 45.33/45.55  (declare-fun tptp.unionset ((-> (-> $$unsorted Bool) Bool) $$unsorted) Bool)
% 45.33/45.55  (assert (= tptp.unionset (lambda ((F (-> (-> $$unsorted Bool) Bool)) (X $$unsorted)) (exists ((Y (-> $$unsorted Bool))) (and (@ F Y) (@ Y X))))))
% 45.33/45.55  (assert (forall ((X (-> (-> $$unsorted Bool) Bool))) (= (@ tptp.sup (@ tptp.supset X)) (@ tptp.sup (@ tptp.unionset X)))))
% 45.33/45.55  (declare-fun tptp.addition ($$unsorted $$unsorted) $$unsorted)
% 45.33/45.55  (assert (= tptp.addition (lambda ((X $$unsorted) (Y $$unsorted)) (@ tptp.sup (@ (@ tptp.union (@ tptp.singleton X)) (@ tptp.singleton Y))))))
% 45.33/45.55  (declare-fun tptp.leq ($$unsorted $$unsorted) Bool)
% 45.33/45.55  (assert (forall ((X1 $$unsorted) (X2 $$unsorted)) (= (@ (@ tptp.leq X1) X2) (= (@ (@ tptp.addition X1) X2) X2))))
% 45.33/45.55  (declare-fun tptp.multiplication ($$unsorted $$unsorted) $$unsorted)
% 45.33/45.55  (declare-fun tptp.crossmult ((-> $$unsorted Bool) (-> $$unsorted Bool) $$unsorted) Bool)
% 45.33/45.55  (assert (= tptp.crossmult (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (A $$unsorted)) (exists ((X1 $$unsorted) (Y1 $$unsorted)) (and (@ X X1) (@ Y Y1) (= A (@ (@ tptp.multiplication X1) Y1)))))))
% 45.33/45.55  (assert (forall ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (= (@ (@ tptp.multiplication (@ tptp.sup X)) (@ tptp.sup Y)) (@ tptp.sup (@ (@ tptp.crossmult X) Y)))))
% 45.33/45.55  (declare-fun tptp.one () $$unsorted)
% 45.33/45.55  (assert (forall ((X $$unsorted)) (= (@ (@ tptp.multiplication X) tptp.one) X)))
% 45.33/45.55  (assert (forall ((X $$unsorted)) (= (@ (@ tptp.multiplication tptp.one) X) X)))
% 45.33/45.55  (assert (not (forall ((X (-> $$unsorted Bool))) (= (@ (@ tptp.multiplication tptp.zero) (@ tptp.sup X)) tptp.zero))))
% 45.33/45.55  (set-info :filename cvc5---1.0.5_20834)
% 45.33/45.55  (check-sat-assuming ( true ))
% 45.33/45.55  ------- get file name : TPTP file name is QUA012^1
% 45.33/45.55  ------- cvc5-thf : /export/starexec/sandbox2/solver/bin/cvc5---1.0.5_20834.smt2...
% 45.33/45.55  --- Run --ho-elim --full-saturate-quant at 10...
% 45.33/45.55  --- Run --ho-elim --no-e-matching --full-saturate-quant at 10...
% 45.33/45.55  --- Run --ho-elim --no-e-matching --enum-inst-sum --full-saturate-quant at 10...
% 45.33/45.55  --- Run --ho-elim --finite-model-find --uf-ss=no-minimal at 5...
% 45.33/45.55  --- Run --no-ho-matching --finite-model-find --uf-ss=no-minimal at 5...
% 45.33/45.55  --- Run --no-ho-matching --full-saturate-quant --enum-inst-interleave --ho-elim-store-ax at 10...
% 45.33/45.55  % SZS status Theorem for QUA012^1
% 45.33/45.55  % SZS output start Proof for QUA012^1
% 45.33/45.55  (
% 45.33/45.55  (let ((_let_1 (not (forall ((X (-> $$unsorted Bool))) (= (@ (@ tptp.multiplication tptp.zero) (@ tptp.sup X)) tptp.zero))))) (let ((_let_2 (forall ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (= (@ (@ tptp.multiplication (@ tptp.sup X)) (@ tptp.sup Y)) (@ tptp.sup (@ (@ tptp.crossmult X) Y)))))) (let ((_let_3 (= tptp.crossmult (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (A $$unsorted)) (exists ((X1 $$unsorted) (Y1 $$unsorted)) (and (@ X X1) (@ Y Y1) (= A (@ (@ tptp.multiplication X1) Y1)))))))) (let ((_let_4 (= tptp.addition (lambda ((X $$unsorted) (Y $$unsorted)) (@ tptp.sup (@ (@ tptp.union (@ tptp.singleton X)) (@ tptp.singleton Y))))))) (let ((_let_5 (= tptp.unionset (lambda ((F (-> (-> $$unsorted Bool) Bool)) (X $$unsorted)) (exists ((Y (-> $$unsorted Bool))) (and (@ F Y) (@ Y X))))))) (let ((_let_6 (= tptp.supset (lambda ((F (-> (-> $$unsorted Bool) Bool)) (X $$unsorted)) (exists ((Y (-> $$unsorted Bool))) (and (@ F Y) (= (@ tptp.sup Y) X))))))) (let ((_let_7 (@ tptp.sup tptp.emptyset))) (let ((_let_8 (= _let_7 tptp.zero))) (let ((_let_9 (= tptp.singleton (lambda ((X $$unsorted) (U $$unsorted)) (= U X))))) (let ((_let_10 (= tptp.union (lambda ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool)) (U $$unsorted)) (or (@ X U) (@ Y U)))))) (let ((_let_11 (= tptp.emptyset (lambda ((X $$unsorted)) false)))) (let ((_let_12 (tptp.sup SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_2))) (let ((_let_13 (tptp.sup lambdaF_3))) (let ((_let_14 (tptp.multiplication _let_13 _let_12))) (let ((_let_15 (= _let_13 _let_14))) (let ((_let_16 (tptp.sup lambdaF_145))) (let ((_let_17 (= _let_14 _let_16))) (let ((_let_18 (= lambdaF_3 lambdaF_145))) (let ((_let_19 (forall ((X (-> $$unsorted Bool))) (let ((_let_1 (@ tptp.sup (lambda ((BOUND_VARIABLE_1397 $$unsorted)) false)))) (= _let_1 (@ (@ tptp.multiplication _let_1) (@ tptp.sup X))))))) (let ((_let_20 (not _let_15))) (let ((_let_21 (EQ_RESOLVE (ASSUME :args (_let_11)) (MACRO_SR_EQ_INTRO :args (_let_11 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_22 (ASSUME :args (_let_10)))) (let ((_let_23 (EQ_RESOLVE (ASSUME :args (_let_9)) (MACRO_SR_EQ_INTRO :args (_let_9 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_24 (EQ_RESOLVE (SYMM (ASSUME :args (_let_8))) (MACRO_SR_EQ_INTRO (AND_INTRO _let_23 _let_22 _let_21) :args ((= tptp.zero _let_7) SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_25 (EQ_RESOLVE (ASSUME :args (_let_6)) (MACRO_SR_EQ_INTRO :args (_let_6 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_26 (EQ_RESOLVE (ASSUME :args (_let_5)) (MACRO_SR_EQ_INTRO :args (_let_5 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_27 (AND_INTRO (EQ_RESOLVE (ASSUME :args (_let_3)) (MACRO_SR_EQ_INTRO :args (_let_3 SB_DEFAULT SBA_FIXPOINT))) (EQ_RESOLVE (ASSUME :args (_let_4)) (MACRO_SR_EQ_INTRO (AND_INTRO _let_26 _let_25 _let_24 _let_23 _let_22 _let_21) :args (_let_4 SB_DEFAULT SBA_FIXPOINT))) _let_26 _let_25 _let_24 _let_23 _let_22 _let_21))) (let ((_let_28 (EQ_RESOLVE (ASSUME :args (_let_1)) (TRANS (MACRO_SR_EQ_INTRO :args (_let_1 SB_DEFAULT SBA_FIXPOINT)) (MACRO_SR_EQ_INTRO _let_27 :args ((not (forall ((X (-> $$unsorted Bool))) (= tptp.zero (@ (@ tptp.multiplication tptp.zero) (@ tptp.sup X))))) SB_DEFAULT SBA_FIXPOINT)))))) (let ((_let_29 (or))) (let ((_let_30 (not _let_19))) (let ((_let_31 (=>))) (let ((_let_32 (not))) (let ((_let_33 (=))) (let ((_let_34 (THEORY_PREPROCESS :args ((= (@ (@ tptp.multiplication _let_13) _let_12) _let_14))))) (let ((_let_35 (@))) (let ((_let_36 (THEORY_PREPROCESS :args ((= (@ tptp.sup SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_2) _let_12))))) (let ((_let_37 (THEORY_PREPROCESS :args ((= (@ tptp.sup lambdaF_3) _let_13))))) (let ((_let_38 (REFL :args (tptp.sup)))) (let ((_let_39 (TRANS (CONG _let_38 (MACRO_SR_PRED_INTRO :args ((= (lambda ((BOUND_VARIABLE_1397 $$unsorted)) false) lambdaF_3))) :args _let_35) _let_37))) (let ((_let_40 (REFL :args (tptp.multiplication)))) (let ((_let_41 (_let_30))) (let ((_let_42 (forall ((X (-> $$unsorted Bool)) (Y (-> $$unsorted Bool))) (= (@ (@ tptp.multiplication (@ tptp.sup X)) (@ tptp.sup Y)) (@ tptp.sup (lambda ((A $$unsorted)) (not (forall ((X1 $$unsorted) (Y1 $$unsorted)) (or (not (@ X X1)) (not (@ Y Y1)) (not (= A (@ (@ tptp.multiplication X1) Y1)))))))))))) (let ((_let_43 (EQ_RESOLVE (ASSUME :args (_let_2)) (MACRO_SR_EQ_INTRO _let_27 :args (_let_2 SB_DEFAULT SBA_FIXPOINT))))) (let ((_let_44 (_let_42))) (let ((_let_45 (lambdaF_145 k_250))) (let ((_let_46 (lambdaF_3 k_250))) (let ((_let_47 (= _let_46 _let_45))) (let ((_let_48 (forall ((X1 $$unsorted) (Y1 $$unsorted)) (or (not (@ lambdaF_3 X1)) (not (@ SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_2 Y1)) (not (= (@ (@ tptp.multiplication X1) Y1) k_250)))))) (let ((_let_49 (not _let_48))) (let ((_let_50 (= _let_45 _let_49))) (let ((_let_51 (not _let_45))) (let ((_let_52 (forall ((A $$unsorted)) (= (not (forall ((X1 $$unsorted) (Y1 $$unsorted)) (or (not (@ lambdaF_3 X1)) (not (@ SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_2 Y1)) (not (= A (@ (@ tptp.multiplication X1) Y1)))))) (lambdaF_145 A))))) (let ((_let_53 ((forall ((A $$unsorted)) (= (lambdaF_145 A) (@ (lambda ((A $$unsorted)) (not (forall ((X1 $$unsorted) (Y1 $$unsorted)) (or (not (@ lambdaF_3 X1)) (not (@ SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_2 Y1)) (not (= A (@ (@ tptp.multiplication X1) Y1))))))) A)))))) (let ((_let_54 (EQ_RESOLVE (MACRO_SR_PRED_INTRO :args _let_53) (REWRITE :args _let_53)))) (let ((_let_55 (tptp.multiplication SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_285 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_286))) (let ((_let_56 (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_286))) (let ((_let_57 (lambdaF_3 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_285))) (let ((_let_58 (not _let_57))) (let ((_let_59 (or _let_58 (not _let_56) (not (= k_250 _let_55))))) (let ((_let_60 (forall ((BOUND_VARIABLE_1397 $$unsorted)) (not (lambdaF_3 BOUND_VARIABLE_1397))))) (let ((_let_61 ((forall ((BOUND_VARIABLE_1397 $$unsorted)) (= (lambdaF_3 BOUND_VARIABLE_1397) (@ (lambda ((BOUND_VARIABLE_1397 $$unsorted)) false) BOUND_VARIABLE_1397)))))) (let ((_let_62 (EQ_RESOLVE (MACRO_SR_PRED_INTRO :args _let_61) (REWRITE :args _let_61)))) (let ((_let_63 (_let_60))) (let ((_let_64 (@ (@ tptp.multiplication SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_285) SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_286))) (let ((_let_65 (@ SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_2 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_286))) (let ((_let_66 (@ lambdaF_3 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_285))) (let ((_let_67 (_let_49))) (let ((_let_68 (and _let_17 _let_18))) (let ((_let_69 (_let_17 _let_18))) (let ((_let_70 (ASSUME :args (_let_17)))) (let ((_let_71 (ASSUME :args (_let_18)))) (SCOPE (SCOPE (MACRO_RESOLUTION_TRUST (REORDERING (RESOLUTION (CNF_AND_NEG :args (_let_68)) (IMPLIES_ELIM (SCOPE (MODUS_PONENS (AND_INTRO _let_70 _let_71) (SCOPE (TRANS (CONG (SYMM (SYMM _let_71)) :args (APPLY_UF tptp.sup)) (SYMM _let_70)) :args _let_69)) :args _let_69)) :args (true _let_68)) :args ((or _let_15 (not _let_17) (not _let_18)))) (MACRO_RESOLUTION_TRUST (THEORY_LEMMA :args ((or _let_18 (not _let_47)) THEORY_UF)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_EQUIV_NEG1 :args (_let_47)) :args ((or _let_46 _let_45 _let_47))) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_62 :args (k_250 QUANTIFIERS_INST_CBQI_CONFLICT)) :args _let_63)) _let_62 :args ((not _let_46) false _let_60)) (MACRO_RESOLUTION_TRUST (REORDERING (CNF_EQUIV_POS1 :args (_let_50)) :args ((or _let_51 _let_49 (not _let_50)))) (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (EQ_RESOLVE (SCOPE (SKOLEMIZE (ASSUME :args _let_67)) :args _let_67) (TRANS (REWRITE :args ((=> _let_49 (not (or (not _let_66) (not _let_65) (not (= _let_64 k_250))))))) (CONG (REFL :args _let_67) (CONG (CONG (CONG (THEORY_PREPROCESS :args ((= _let_66 _let_57))) :args _let_32) (CONG (THEORY_PREPROCESS :args ((= _let_65 _let_56))) :args _let_32) (CONG (CONG (REFL :args (k_250)) (THEORY_PREPROCESS :args ((= _let_64 _let_55))) :args _let_33) :args _let_32) :args _let_29) :args _let_32) :args _let_31)))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_49) _let_48))) (REFL :args ((not _let_59))) :args _let_29)) (MACRO_RESOLUTION_TRUST (REORDERING (EQ_RESOLVE (CNF_OR_NEG :args (_let_59 0)) (CONG (REFL :args (_let_59)) (MACRO_SR_PRED_INTRO :args ((= (not _let_58) _let_57))) :args _let_29)) :args ((or _let_57 _let_59))) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (SCOPE (INSTANTIATE _let_62 :args (SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_285 QUANTIFIERS_INST_CBQI_CONFLICT)) :args _let_63)) _let_62 :args (_let_58 false _let_60)) :args (_let_59 true _let_57)) :args (_let_48 false _let_59)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (MACRO_SR_PRED_ELIM (SCOPE (INSTANTIATE _let_54 :args (k_250 QUANTIFIERS_INST_E_MATCHING_SIMPLE ((lambdaF_145 A)))) :args (_let_52)))) _let_54 :args (_let_50 false _let_52)) :args (_let_51 false _let_48 false _let_50)) :args (_let_47 true _let_46 true _let_45)) :args (_let_18 false _let_47)) (MACRO_RESOLUTION_TRUST (IMPLIES_ELIM (EQ_RESOLVE (SCOPE (INSTANTIATE _let_43 :args (lambdaF_3 SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_2 QUANTIFIERS_INST_ENUM)) :args _let_44) (CONG (REFL :args _let_44) (CONG (TRANS (CONG (CONG _let_40 _let_37 :args _let_35) _let_36 :args _let_35) _let_34) (TRANS (CONG _let_38 (MACRO_SR_PRED_INTRO :args ((= (lambda ((A $$unsorted)) (not (forall ((X1 $$unsorted) (Y1 $$unsorted)) (or (not (@ lambdaF_3 X1)) (not (@ SKOLEM_FUN_QUANTIFIERS_SKOLEMIZE_2 Y1)) (not (= A (@ (@ tptp.multiplication X1) Y1))))))) lambdaF_145))) :args _let_35) (THEORY_PREPROCESS :args ((= (@ tptp.sup lambdaF_145) _let_16)))) :args _let_33) :args _let_31))) _let_43 :args (_let_17 false _let_42)) (MACRO_RESOLUTION_TRUST (EQ_RESOLVE (IMPLIES_ELIM (EQ_RESOLVE (SCOPE (SKOLEMIZE _let_28) :args _let_41) (CONG (REFL :args _let_41) (CONG (CONG _let_39 (TRANS (CONG (CONG _let_40 _let_39 :args _let_35) _let_36 :args _let_35) _let_34) :args _let_33) :args _let_32) :args _let_31))) (CONG (MACRO_SR_PRED_INTRO :args ((= (not _let_30) _let_19))) (REFL :args (_let_20)) :args _let_29)) _let_28 :args (_let_20 true _let_19)) :args (false false _let_18 false _let_17 true _let_15)) :args (_let_11 _let_10 _let_9 _let_8 (forall ((X $$unsorted)) (= (@ tptp.sup (@ tptp.singleton X)) X)) _let_6 _let_5 (forall ((X (-> (-> $$unsorted Bool) Bool))) (= (@ tptp.sup (@ tptp.supset X)) (@ tptp.sup (@ tptp.unionset X)))) _let_4 (forall ((X1 $$unsorted) (X2 $$unsorted)) (= (@ (@ tptp.leq X1) X2) (= (@ (@ tptp.addition X1) X2) X2))) _let_3 _let_2 (forall ((X $$unsorted)) (= (@ (@ tptp.multiplication X) tptp.one) X)) (forall ((X $$unsorted)) (= (@ (@ tptp.multiplication tptp.one) X) X)) _let_1 true))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
% 45.33/45.56  )
% 45.33/45.56  % SZS output end Proof for QUA012^1
% 45.33/45.56  % cvc5---1.0.5 exiting
% 45.33/45.56  % cvc5---1.0.5 exiting
%------------------------------------------------------------------------------